skip to main content


Search for: All records

Creators/Authors contains: "Pickett, Steward T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This perspective emerged from ongoing dialogue among ecologists initiated by a virtual workshop in 2021. A transdisciplinary group of researchers and practitioners conclude that urban ecology as a science can better contribute to positive futures by focusing on relationships, rather than prioritizing urban structures. Insights from other relational disciplines, such as political ecology, governance, urban design, and conservation also contribute. Relationality is especially powerful given the need to rapidly adapt to the changing social and biophysical drivers of global urban systems. These unprecedented dynamics are better understood through a relational lens than traditional structural questions. We use three kinds of coproduction—of the social-ecological world, of science, and of actionable knowledge—to identify key processes of coproduction within urban places. Connectivity is crucial to relational urban ecology. Eight themes emerge from the joint explorations of the paper and point toward social action for improving life and environment in urban futures.

     
    more » « less
  2. Abstract Ecologists who study human-dominated places have adopted a social–ecological systems framework to recognize the coproduced links between ecological and social processes. However, many social scientists are wary of the way ecologists use the systems concept to represent such links. This wariness is sometimes due to a misunderstanding of the contemporary use of the systems concept in ecology. We aim to overcome this misunderstanding by discussing the contemporary systems concept using refinements from biophysical ecology. These refinements allow the systems concept to be used as a bridge rather than a barrier to social–ecological interaction. We then use recent examples of extraordinary fire to illustrate the usefulness and flexibility of the concept for understanding the dynamism of fire as a social–ecological interaction. The systems idea is a useful interdisciplinary abstraction that can be contextualized to account for societally important problems and dynamics. 
    more » « less
  3. As disasters become more frequent and intense, research on legacy conditions can improve disaster science and preparedness. 
    more » « less
  4. Abstract

    Ecologywiththe city is a transdisciplinary pursuit, combining the work of researchers, policy makers, managers, and residents to advance equity and sustainability. This undertaking may be facilitated by understanding the parallels in two kinds of coproduction. First, is how urban systems themselves are places that are jointly constituted or coproduced by biophysical and social processes. Second, is how sustainable planning and policies also join human concerns with biophysical structures and processes. Seeking connections between coproduction of place and the coproduction of knowledge may help improve how urban ecology engageswithdiverse communities and urban interests in service of sustainability.

     
    more » « less
  5. Abstract

    Tree canopy cover is a critical component of the urban environment that supports ecosystem services at multiple spatial and temporal scales. Increasing tree canopy across a matrix of public and private land is challenging. As such, municipalities often plant trees along streets in public rights‐of‐way where there are fewer barriers to establishment, and composition and biomass of street trees are inextricably linked to human decisions, management, and care. In this study, we investigated the contributions of street trees to the broader urban forest, inclusive of tree canopy distributed across both public and private parcels in Baltimore, MD, USA. We assess how species composition, biodiversity, and biomass of street trees specifically augment the urban forest at local and citywide scales. Furthermore, we evaluate how street tree contributions to the urban forest vary with social and demographic characteristics of local residential communities. Our analyses demonstrate that street trees significantly enhanced citywide metrics of the urban forests' richness and tree biomass, adding an average six unique species per site. However, street tree contributions did not ameliorate low tree canopy locations, and more street tree biomass was generally aligned with higher urban forest cover. Furthermore, species richness, abundance, and biomass added by street trees were all positively related to local household income and population density. Our results corroborate previous findings that wealthier urban neighborhoods often have greater tree abundance and canopy cover and, additionally, suggest that investment in municipally managed street trees may be reinforcing inequities in distribution and function of the urban forest. This suggests a need for greater attention to where and why street tree plantings occur, what species are selected, and how planted tree survival is maintained by and for residents in different neighborhoods.

     
    more » « less
  6. Abstract

    Redlining was a racially discriminatory housing policy established by the federal government’s Home Owners’ Loan Corporation (HOLC) during the 1930s. For decades, redlining limited access to homeownership and wealth creation among racial minorities, contributing to a host of adverse social outcomes, including high unemployment, poverty, and residential vacancy, that persist today. While the multigenerational socioeconomic impacts of redlining are increasingly understood, the impacts on urban environments and ecosystems remain unclear. To begin to address this gap, we investigated how the HOLC policy administered 80 years ago may relate to present-day tree canopy at the neighborhood level. Urban trees provide many ecosystem services, mitigate the urban heat island effect, and may improve quality of life in cities. In our prior research in Baltimore, MD, we discovered that redlining policy influenced the location and allocation of trees and parks. Our analysis of 37 metropolitan areas here shows that areas formerly graded D, which were mostly inhabited by racial and ethnic minorities, have on average ~23% tree canopy cover today. Areas formerly graded A, characterized by U.S.-born white populations living in newer housing stock, had nearly twice as much tree canopy (~43%). Results are consistent across small and large metropolitan regions. The ranking system used by Home Owners’ Loan Corporation to assess loan risk in the 1930s parallels the rank order of average percent tree canopy cover today.

     
    more » « less
  7. Abstract Detecting and understanding disturbance is a challenge in ecology that has grown more critical with global environmental change and the emergence of research on social–ecological systems. We identify three areas of research need: developing a flexible framework that incorporates feedback loops between social and ecological systems, anticipating whether a disturbance will change vulnerability to other environmental drivers, and incorporating changes in system sensitivity to disturbance in the face of global changes in environmental drivers. In the present article, we review how discoveries from the US Long Term Ecological Research (LTER) Network have influenced theoretical paradigms in disturbance ecology, and we refine a framework for describing social–ecological disturbance that addresses these three challenges. By operationalizing this framework for seven LTER sites spanning distinct biomes, we show how disturbance can maintain or alter ecosystem state, drive spatial patterns at landscape scales, influence social–ecological interactions, and cause divergent outcomes depending on other environmental changes. 
    more » « less
  8. null (Ed.)
    Abstract The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological–physical–social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social–ecological research projects. 
    more » « less