Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This perspective emerged from ongoing dialogue among ecologists initiated by a virtual workshop in 2021. A transdisciplinary group of researchers and practitioners conclude that urban ecology as a science can better contribute to positive futures by focusing on relationships, rather than prioritizing urban structures. Insights from other relational disciplines, such as political ecology, governance, urban design, and conservation also contribute. Relationality is especially powerful given the need to rapidly adapt to the changing social and biophysical drivers of global urban systems. These unprecedented dynamics are better understood through a relational lens than traditional structural questions. We use three kinds of coproduction—of the social-ecological world, of science, and of actionable knowledge—to identify key processes of coproduction within urban places. Connectivity is crucial to relational urban ecology. Eight themes emerge from the joint explorations of the paper and point toward social action for improving life and environment in urban futures.more » « less
-
Abstract Ecologists who study human-dominated places have adopted a social–ecological systems framework to recognize the coproduced links between ecological and social processes. However, many social scientists are wary of the way ecologists use the systems concept to represent such links. This wariness is sometimes due to a misunderstanding of the contemporary use of the systems concept in ecology. We aim to overcome this misunderstanding by discussing the contemporary systems concept using refinements from biophysical ecology. These refinements allow the systems concept to be used as a bridge rather than a barrier to social–ecological interaction. We then use recent examples of extraordinary fire to illustrate the usefulness and flexibility of the concept for understanding the dynamism of fire as a social–ecological interaction. The systems idea is a useful interdisciplinary abstraction that can be contextualized to account for societally important problems and dynamics.more » « less
-
Abstract Ecologywiththe city is a transdisciplinary pursuit, combining the work of researchers, policy makers, managers, and residents to advance equity and sustainability. This undertaking may be facilitated by understanding the parallels in two kinds of coproduction. First, is how urban systems themselves are places that are jointly constituted or coproduced by biophysical and social processes. Second, is how sustainable planning and policies also join human concerns with biophysical structures and processes. Seeking connections between coproduction of place and the coproduction of knowledge may help improve how urban ecology engageswithdiverse communities and urban interests in service of sustainability.more » « less
-
Abstract Detecting and understanding disturbance is a challenge in ecology that has grown more critical with global environmental change and the emergence of research on social–ecological systems. We identify three areas of research need: developing a flexible framework that incorporates feedback loops between social and ecological systems, anticipating whether a disturbance will change vulnerability to other environmental drivers, and incorporating changes in system sensitivity to disturbance in the face of global changes in environmental drivers. In the present article, we review how discoveries from the US Long Term Ecological Research (LTER) Network have influenced theoretical paradigms in disturbance ecology, and we refine a framework for describing social–ecological disturbance that addresses these three challenges. By operationalizing this framework for seven LTER sites spanning distinct biomes, we show how disturbance can maintain or alter ecosystem state, drive spatial patterns at landscape scales, influence social–ecological interactions, and cause divergent outcomes depending on other environmental changes.more » « less
-
-
null (Ed.)Abstract The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological–physical–social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social–ecological research projects.more » « less
An official website of the United States government
